

Parallel I/O Performance: From Events to Ensembles

Andrew Uselton

National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory

Parallel I/O Performance: From Events to Ensembles

In collaboration with:

- Lenny Oliker
- David Skinner
- Mark Howison
- Nick Wright
- Noel Keen
- John Shalf
- Karen Karavanic

Parallel I/O Evaluation and Analysis

- Explosion of sensor & simulation data make I/O a critical component
- Petascale I/O requires new techniques: analysis, visualization, diagnosis
- Statistical methods can be revealing
- Present case studies and optimization results for:
 - MADbench A cosmology application
 - GCRM A climate simulation

IPM-I/O is an interposition library that wraps I/O calls with tracing instructions

Job trace

Events to Ensembles

The details of a trace can obscure as much as they reveal
And it does not scale
Statistical methods reveal what the trace obscures

Case Study #1:

- MADCAP analyzes the Cosmic Microwave Background radiation.
- Madbench An out-of-core matrix solver writes and reads all of memory multiple times.

CMB Data Analysis

MADbench Overview

- ◆MADCAP is the maximum likelihood CMB angular power spectrum estimation code
- ◆MADbench is a lightweight version of MADCAP
- Out-of-core calculation due to large size and number of pix-pix matrices

Computational Structure

II. Compute/Communicate (no I/O)

wall clock The compute intensity can be tuned down to emphasize I/O

MADbench I/O Optimization

wall clock time

MADbench I/O Optimization

MADbench I/O Optimization

Cumulative Probability

A statistical approach revealed a systematic pattern

Case Study #2:

- Global Cloud Resolving Model
 (GCRM) developed by scientists at
 CSU
- Runs resolutions fine enough to simulate cloud formulation and dynamics
- Mark Howison's analysis fixed it

Task 0

Task 10,000

desplock time checkpoint time

At 4km resolution GCRM is dealing with a lot of data. The goal is to work at 1km and 40k tasks, which will require 16x as much data.

Worst case 20 sec

Insight: all 10,000 are happening at once

Worst case 3 sec

Collective buffering reduces concurrency

Before

desired checkpoint time

After

Insight:
Aligned
Aligned
better
I/O
worst case
behavior
Worst case
1 sec

.001 .01 .1 1 10 100

Sometimes the trace view is the right way to look at it

Metadata is being serialized through task 0

Defer metadata ops so there are fewer and they are larger

.001 .01 .1 1 10 100

desired checkpoint time

After

Conclusions and Future Work

- Traces do not scale, can obscure underlying features
- Statistical methods scale, give useful diagnostic insights into large datasets
- Future work: gather statistical info directly in IPM
- Future work: Automatic recognition of model and moments within IPM

Acknowledgements

- Julian Borrill wrote MADCAP/MADbench
- Mark Howison performed the GCRM optimizations
- Noel Keen wrote the I/O extensions for IPM
- Kitrick Sheets (Cray) and Tom Wang (SUN/Oracle) assisted with the diagnosis of the Lustre bug
- •This work was funded in part by the DOE Office of Advanced Scientific Computing Research (ASCR) under contract number DE-C02-05CH11231

